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ABSTRACT
Extensions of the well known results of Brezzi on saddle
point problems are presented. The class of problems is gen-
eralized to includé the unsymmetric case, and the known
stability and approximation results are strengthened, and
applied to the generalized problem. As an application, an

existence theorem for the Stokes problem is given.
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1. Introduction

In [4], F. Brezzi obtained existence, uniqueness and

stability results for the saddle point problem

a(u,v) + b(e,v) <E,v> V¥V v eVl (1.1

il

b(y,w) =<g,4> T pes (1.2)

where (1.1) - (1.2) are to be solved for the pair (u,gp)e b X §
and where a(-,:) and b(-:,-) are bilinear forms defined re-
spectively on ¥ X ¥ and 8§ x \. <f,> and <g,*> denote
bounded linear functionals respectively in the dual spaces V!
and 8' of the Hilbert spaces ¥ and §, 1In éddition, approx-
imation of (1.1) - (1.2) in closed subspaces UhC:U and

sPc s was considered. In essence, the forms a(-,+) and

b(+,-) were assumed to satisfy the usual type of continuity

and stability conditions (see §2 below), and the stability and

error estimates provided were then obtained in the norm on

r X 8

I | = lall, + lelg. (1.3)

Further questions studied in [4] concern "numerical integration”
and "nonconforming" approximations, both relevant to finite
element choices of the approximating subspaces v and Sh.

It is well known that many problems of interest arise

naturally in the form (1.1) - (1.2). Among them are the



governing equations of linear elasticity appropriately expressed,
and the Stokes problem for slow viscous incompressible flow of a
Newtonian fluid., Also, many variational problems with equality
constraints give rise to Euler equations of this type once a
Lagrange multiplier is introduced. Another source of problems
of this type is in the reduction of highe; order boundary value
problems to lower order ones by the introduction of new variables
representing derivatives of the original variables ("mixed
methods"). Some of these topics are considered in [4] and the
references therein. See also [5], [6] and especially their
references for later work.

There are two objections one may raise concerning the
theory of [4]. The_f%rst of them concerns the use of the
product space norm (1.,3). This is clearly the natural norm
to use if the view is taken of (1l.1) -~ (1.2) that (under ap-

propriate conditions) its left side defines an operator
M: U¥UXx 8§ ->1L X 8§,

that is, that the nature of the coupling between the variables
u and ¢ is, in a sense, to be suppressed. In many physical
examples this is not a satisfactory approach, and it would
seem worthwhile to have a theory in which the stability and
approximation estimates were expressed separately for the

variables u, and ¢. Second, some problems of interest [e.g. 7]




have the more general form than (1.1) =~ -(1.2),

a(u,vy) + by (9,v,) = <£f,v> Vv, el (1.4)

bz(wzyu) = <g:w2> Y &2 €82 (1.5)

u e Ul, v € Sl being the sought solution, a(v,°),b1(-,-),b (¢,*)
being defined on the implied Hilbert spacés and satisfying cer-
tain continuity and stability conditions. The results of [4]

do not, in general, apply to this problem. The object of the
present note is, therefore, to obtain existence uniqueness and
approximation results for the system (1.4) - (1.5) taking regard,
where possible, of the separate identities of the u and ¢
variables, The desirgd estimates and general approximation
scheme are obtained and presented in §2 - §4, In the final
section, as an application of the theory, a proof of an exis-
tence theorem for the Stokes problem mentioned above is given,
In a forthcoming report [8], the results are applied to a wider
set of problems, including questions of approximation not con-

sidered here.

2, Preliminaries

Standard notations are used throughout. All Hilbert spaces
are assumed real, For such a space U its inner product and

norm will be denoted by ( and || respectively. The

subscript will be omitted when the context makes it possible.



u! denotes the dual space of U and the value of f € Ut at ucU
will be written as <f,u>,,, . The norm of £ ¢ U' is written as
Hf”u,. Again, subscripts will be omitted where possible. By

definition,

sup
I£ll,, =uc u Sﬁéﬁz £ e ul.
u#o ,

The main objective of this section is to prove a verison
of Babuska'’s generalization of the Lax-Milgram theorem, appro-
priate to the problem we wish to solve. The following elementary

lemma will be needed.

Lemma 2.1
Let c¢(8,v) be a bilinear form defined Vv 8 ¢ § and Vv e VU,
S and VU Dbeing Hilbert spaces, Let
Z=1(2z ¢ VU|lc(B,2) =0 v 8 ¢ 8)
and suppose c¢{(6,v) is continuous in the sense
lco,v)] < xl6ll llvll v 8 €8, velu (2.1)

Then U =2 ® b where W = Z°,

Proof:

It is necessary only to show that Z is a closed linear subspace
of YV, and this follows immediately from the continuity of
c(8,v).

The required form of Babuska's theorem is the following,




Theorem 2.1

Let c¢(8,v) satisfy, in addition to the conditions of Lemma 2.1,
sup c(8,w) > wa]]U ¥ we l; sup c(8,w)> 0, ¥ 8e8 6% (2.2)
H6ﬁ=l wel

with vy > 0.
Then the equation for w ¢ W

c(B,w) =<£,0> Vvees
is uniquely solvable V fe 8! and the stability estimate
-1
lwll, < vy~
holds.

Proof.
W is a Hilbert space, with the norm and inner product inherited

from VU. The bilinear form
S(o,w & c(o,w VeSS, wel

satisfies the conditions of Babuska's theorem [l] V6 ¢ 8§ and

w € W. The desired result therefore follows from [1].

Corollary 2.1

The equation for 8 ¢ §

C(e,W) = {g,w> Vwel, gel!



is uniquely solvable V gelU'! and a constant y! exists such

that

iy, < (v Mgl

Proof,

The theorem implies the existence of a constant, y', such that
sup  c(8,w) > v'[6ll v ees y'>o0,
fl,

and the result follows from the theorem by applying the latter
to the form ¢ (w,8) = c(8,w), observing that gel'! = geW!

with HgHw, < HgHUr'

If Z is empty, Theorem 2,1 reduces to Babuska's theorem.

3. Existence, Uniqueness, Stability

Let bl(el,vz) and b2(62,vl) be defined as indicated on

Hilbert spaces § Sz,h 1% and satisfy the conditions of

1’ 1’72
Theorem 2,1 with constants Ki,yi,y;, i=1,2. Let Z,, i=1,2
denote the associated closed null spaces and let wi = Z;,
i=1,2, Let a(vl,vz) be another bilinear form defined

v vlezul and vy €V, and satisfying the conditions of bound-

edness and stability

la(vy,vo) | < Mlivyll flv,ll v vyer; 1=1,2 (3.1)

sup af(z,,z,) 8llz : sup a(z,,2;5) > 0 (3.2)
B R R LA




where (3.2) hold respectively Y zlezl - and zzezz, z, A0, 8> 0,
Consider the (generalized) saddle point problem, of finding

uebl, wesl such that

a(u,vz) + bl(¢,v2) <f,v2> ¥V vyel, (3.3)
b2 ('Pz',u) = <g,qb2> v wzegz (3.4)

where feué and geSé.

Theorem 3,1

Under the hypotheses on bi(Bi,vi) and a(vl,vz) stated above,
the saddle problem (3.3) - (3.4) has a unique solution ueUl,
@esl, and there exist constants c¢,., i,j = 1,2 such that the

1]
stability estimates.

lull < eqpllEll + cppliall ol < epy £ + ey0llg

.

-1

hold, where c,, = 3§

11

Proof,
Z, are Hilbert spaces with inner products inherited from

V-

i 1 = 1,2. By (3.1)

a(zl’ZZ) SMHZJ_H “ZZH (3.5)

and hence, by (3.5), (3.2) and Corollary 2.1 with § = Zl,
v = 22, c(*,*) = a(+,) and Z. empty it follows that the

equation

-1 1 -1 ' o1
€12 = VoI (D), S5y = (yy) LMy g)cy, = (v) M

12°
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!
a(l,z,) =<h,z)>, heZ,, .V z,cZ, (3.6)

has a unique solution { satisfying

-1
HCHZl ”§”ul <6 HhHZ; (3.7)

and in particular, if hehé then heZé, Htht £ "h”bt and
. 2 2

lell, < 8™ lnly,!-

Let w Dbe the unique solution to (3.4) in wl whose existence

and boundedness follows from Theorem 2.1l. By (3.1)

a(w,v,) < Miwll flvyll ¥ ovyeu,
(3.8)
< my3tgl o,

so that a(w,*) defines a bounded linear functional on UZ and

hence on 22. Therefore,

<f5'> - a(w,-) (3-9)

defines a bounded linear functional on Z,. Hence, by (3.6),

the equation
a(c,zz) = <f,zz> - a(w,zz) v 22622 ‘ (3.10)
has a unigue solution CeZl bounded as at (3.7). In fact

el < o= r)jfmv; gl




Define u = w{ <5Ul. Clearly,

lull < vz ol + s~ el £l+my3 gl (3.11)

so that a(u,*) defines a bounded linear functional on Uy
By Corollary 2,1, with c(.,.) = bl(-,-) v = U2, 8§ = Sl, it

follows that the equation
bl(w,wz) = <f,w2> - a(u,w2) (3.12)
has a unique solution @egl satisfying

lell < vl ll+mfulla . | (3.13)

Transposing the a(*,*) terms on the right of (3.10) and (3.12)

to the left sides and adding gives
a(u,w2+22) + bl(¢,w2+z2) = <f,w2+22>.

Since Vv, =W, @ Z this is eguivalent to

2 2 2
a(usvz) + bl(tpyvz) = <f;V2> v V2€U2 (3.14)

and since, clearly,
b2(¥)2,W+C) = b2 (wzyw) = <g’$2> v w?_egz’ (30 15)

(3.14) - (3.15) show the existence of the solution ueUl, wegl.
Unigueness is clear from the above proof since w 1is unique but

in any case can be simply derived in the usual way from the
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stability estimates (3.11) and (3.13) which may be conveniently

rewritten in the form

lall < ey HEN + epplialls flell <epy €l + ey, liall

Thus, the theorem is proved. Notice that e.g. the stability of

u 1is independent of the properties of bl(w,v). This and

similar facts would be lost in a product norm type of analysis.
It is worth observing that if Ul = Uz =¥ and a(-,*) is

known to be continuous on V¥ X ¥ and to satisfy

a(v,v) > 8|lv%, 8> 0 Vv vel, (3.16)

then conditions (3.2) will hold,

4, Approximation

Let U?, S?, i =1,2 be closed subspaces of v, Si, i=1,2
respectively., The approximate problem to be considered is to
find uheU? and ¢hes? such that

h _h h _h, _ H h
a(u’,v)) + b (a",v]) = <E,v> ¥ vper (4.1)
h hy _ h .h
by (¥3.u") = <g.ul> ¥ gy (4.2)
(4.1) - (4.2) constitute a generalized saddle problem on the

indicated Hilbert spaces, U?, 8?,

i =1,2, In order to show the
existence, uniqueness and stability of a solution to this problemn,
we simply require that the forms a(*,*) and bi(-,') satisfy on
their respective spaces the conditions which enabled the corre-

sponding "continuous" problem to be solved in Theorem 3,1. 1In
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fact, the continuity conditions are automatically satisfied,
since Ugeui and s?esi, i =1,2, We have then the orthogonal

decompositions

o
o
fo g

Ve = Z0 @b i=1,2

where

h h}

h_ . h_ h h _h, _
z, = [zleullbz(;pz ,zl) =0 V ¥,e8,

with a corresponding definition for vzg. In general, Z? ¢ z,,

h .
Wy ¢ b,, 1 =1,2.
The following conditions on the forms and spaces are now

assumed to hold: with éh > 0

h_h h h h
sup af{z.,;z3) > & llz7|l + sup a(z,,z,) >0 (4.3)
h 1’72 h'"1 h 1°7°2
B! 2
with z?ez?, zgezg, zg # 0. These are analogous to (3.2). Also
the conditions, with y? > 0 and yg >0
h h h, h h _h
Sup by (8),wy) > yplwoll SUp by (8;,w) >0 (4.4)
H91”=l Wy
v wgehg and 9? #0 esg, respectively, and
h hy h h _h
sup bz(eg,wl) > Yyllwill - suﬁp b,(8,,w;) > 0 (4.5)
H62”=1 LA
h ' h h h . .
vV wiely and 6, # 0 €S, respectively are assumed to hold. 1In
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this case, an appeal to Theorem 3.1 establishes the existence
uniqueness and stability of a solution to (4.1l) - (4.2). 1In .

. . . _ h _'h
the particular case in which Ul = UZ’ Ul = U2

the condition
(4.3) will be a consequence of the coercivity condition (3.16),
if the latter holds.,

Next, we shall estimate the differences ||u-uhH.U and
1l

ncp-cphngl.

Theorem 4.1

t
There exist numbers Li’ i =1,2,3,4 dependent only on (y?) s

yg, K2, Kl’ 6h’ M (and defined below) such that

h . h . Ah
lu-u™f < ; inf lu=8") + L, inf |lo-¢ ||
A h h h
U el ® €8]

h . Ah : Ah
lo-9 || < Ly inf fle-¢f| + L, inf |u-d

Ah ,h A
) eSl u eUl
Proof
u=1¢ + w, where Cezl, wewl. Analogously, uh has the unique
h h _,h h . h

decomposition ol = Ch + w, with £ eZ and w ewl. Moreover,

1
by subtraction of (4.2) and (3.4)

h h h .h
by (Y, w-w) =0 V $,e8,. (4.6)
h *
Let (" be arbitrary in Uh, q = A Qh, with Qhez?, Qhew?.

Then by (4.6)
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h Ah h h Ah

b (#’2’ -W) =Db (#’2, -II)‘

and by (4.5) and continuity,

Ah h Ah
vl < gy llu-bP). (4.7)
Subtracting (4.1) and (3.3) and taking vgezg, it follows that
a(u~- uh,vg) = -b1(¢ h,vg)

where Qh is arbitrary in 82. Therefore,

Ah  h _h
a(u -u ,V2) = a(u -u,v ) - b (@ ¢h,vg)

so that

Ah ,h h Ah _h
a(zh-g Vo) = a(aP -u,v2) + a(wh-wh vy) = by (- wh, 2)

By (4.3), (3.1) and continuity of bl('

h Ah

P2 < M8+ [WRAP) 4 R (e-g"

h”C . (4.8)

Then, since
[ e T N T S e I P o I |
(4.7) ~ (4.8) give
lu-a®} < o flu-2 + n,lle-8"

where

_ h h -
L, = 1+ K2/Y2 + M/6h + (MK2)/(Y26h), L, = Kl/ah.
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The first part of the theorem now follows, since 4P ana éh

are arbitrary.

To prove the second part, again from (4.1) and (3.3),

with vg now arbitrary in Ug,

h h h)
2

h
bl(¢-¢ ,v2) = ~a(u-u ,v
so that V¥ éhes?,

Ah h _h Ah h h _h
bl(w -9 ,v2) = bl(w -¢,v2) -a(u-u ’VZ)‘

Then by (4.4) and continuity

By 1 18R-6P) < %, 18P0l + Mlu-uP,

and by the triangle inequality and the first part of the theorem,
h Ah Ah
llo-0"1| < Lyllo-o || + Lyllu-a"|

_ h h _ h
where L, =1+ Kl/(Yl) U ML2/(Y1)', L, = MLl/(Yl) !, Thus,

Theorem 4,1 is proved.

Corollary 4.1

1f 7% c Z, then the estimate for Hu-uhH may be improved to

Hu-uhH < L; inf Hu-Gh
Ah _h

eUl

Proof

This followsfrom (4.8), since the term Kl”¢'$h” no longer needs
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to appear in this inequality, and the subsequent deductions

from it.

Sometimes, the norms in which the problem is well posed (i.e,
the norms on Ui and Si, i = 1,2) are not those in which
approximation errors are wanted. Several approaches to this

question are possible and have been recently investigated,

(21, (5], fel].

5. Stokes! Problem

As a simple application of Theorem 3.1, consider the Stokes

problem of finding u and p such that

-VAu + Vp = £ (5.1)

) in Q
div u =0 (5.2)
u=209 on Jdf} (5. 3)

Here, 1 is a bounded domain of R3, and v a positive constant.

In order to formulate the weak problem, the spaces U and
8 must be defined., V¥ will be defined as a certain closed
A A
linear subspace of Hé(ﬂ) , where Hé(ﬂ) is the closure of

Cg)(ﬂ) functions in the norm

lul® = [ vu-va o, (5.4)
Q

(Derivatives are always assumed to be taken in the distribution

sense). Let
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23 = (2T | div z = 0)

WP = {we_égo(ﬂ) | curl w 0}, i

0

(e o]
0

in the norm (5.4). Z and W are then closed linear subspaces

and denote by Z and b the completion of zgo and W
=1
of HO(Q).
Observe that ¥ zeQZWeE
div z = 0, curl w = O: (5.5)
for if, e.g {w} »w in ﬁl(ﬂ) with w ecaﬁﬂ) then
7 T m 0 ? m- 0 ’

||curl wi_ = ||curl (w-w_) || < K||w-w_||
2 (@) w2 g < mlﬁé )

from which the second equation follows, The first may be shown

by a similar argument,

Lemma 5,1

]
v u,VeHO(Q)
(Vu,Vv)__;2 = (div u,div V) 2 + (curl u,curl v)_\2 (5.6)
L7 (Q) L () L7 ()
Proof

It is sufficient to prove this result for u,Vecga(ﬂ). To do

this, take the common identity

curl curl v = ¢ div v - div Vv,
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multiply on the left by u and integrate over Q1 wusing the
boundary conditions on u and v and the easily provable

identity

J vecurl u 3 = I(curl vlku 3N + f (vxu) *nds
9) 9] N

A
which is valid on Hé(n), and the tensor identity

J

vediv T 30 = - f YueT 30 + f (v+T) nds
Q a an

valid for second order tensors T with components in Hé(ﬂ).

The result is (5.6).

Lemma 5.2

~o

~ A
Z and W are orthogonal in Hé(ﬂ)

Proof

A
Recall that Hé(ﬂ) is a Hilbert space with inner product
=21
(u,v) = f vu-vvan, u,VeHO(ﬂ). (5.7)
9]

Then if ze¢Z and wel the result follows from (5.5) ~ (5.6).
S
The space Uy = v, =V, which will be denoted by ﬁé(ﬂ), is

-t
defined as the following closed linear subspace of Hé(ﬂ),
S, ~ ~
e 2708, (5.8)
s =>1
so that by definition, ueuo(n) a

~o ~s

u=2+w zcZ, wel.
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This decomposition is unique, since zZ _and B are closed
A
subspaces of the Hilbert space ﬂé(ﬂ) consisting of (5.8) with

the inner product (5.7).

Lemma 5,3

A ~
Let ueﬁé(ﬂ). Then if div u = 0, then weZ : if curl u = 0,

then ueﬁ.

Proof
Let u=2z+w. Then divu =0 = div w = 0, However, from
(5.6), with u =v =w it then follows that

2 . 2
HWH_q_ = ”dlv w” 2 =0
H, L°(RQ)

so that w =0, and- u = Zef. The other result may be proved
similarly.
The following characterizations of Z and Wb may there-
fore be given: u(eié(ﬂ))e? o divu = 0 and ueld ® curl w = O.
For the scalar space, § = Sl = 82, we take £2(Q) defined

as

@ = (eer® (@] [ 920 = 0}

with inner product and norm inherited from LZ(Q). Since £2(0)

is a closed subspace of LZ(Q), it is a Hilbert space,

it

N
With the spaces ué(n) and 8§ = £2(ﬂ) defined, we turn

now to verification of the various hypotheses. The weak form
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of the problem will be the following: find ueié(ﬂ) and

wesz(ﬂ) such that

LY
a(u,v) +b(ep,v) =<£,v>» - ¥ veug(ﬂ)
b(p,u) =0 v we£2(ﬂ)
where the forms a(+,*) and b(*,*) are defined as.follows:
>1
a(u,v) = Uj Ju-vv 3N v u,veﬂo(ﬂ)
f

(5.9)

b(g,v) = - fn¢ div v on v pes? (@), vel(m).

First of all, from

b, | <l 5 llaiv v]| ,
. L (Q) L™ (Q)

< vl vl
@ @

the continuity of b(y,v) follows. The spaces Z and W are

therefore defined. 1In fact, from the definition of b(-,+) in

(5.9) and Lemma 5.3, it is clear that Z = 21 Moreover, since
Ll

- ~
W is defined as Z* in ué(n), b =B, Thus, Z and W are

. 21
known, Since weHO(Q),

Jndiv w 30 = jnw'n ¢s = 0,

and it follows that div we£2(0) ¥ wel. But then
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sup j ® div w 30 = [div w| ,
lofl=1 @ L@

and by the identity (5.6).

laiv wl , = lwlly,
L™ (Q) HO(Q)
so that the condition (2.2) is proved for b(°,*). To prove
(2.3), assume that it is not true. Then Bo€£2(0) exists such

that

[ ejaivwan =0 v wew (5. 10)

0
Now the equation

. @
div u = h, hecP (), fhan=o
Q
is always solvable for uecg%ﬂx since we can always solve
div(ve) = h, cpecg)(ﬂ)

-
and choose u = V¢. But then uecg)(ﬂ), and curl u = 0., Hence,

uelw. Then by (5.10}, GO is orthogonal to (hecgo(ﬂ)l j haft = 0}
0
which is a set dense in £2(0). Hence 90 = 0, and it follows

that (2.3) is satisfied. It remains to verify the conditions
on af(-,»). But these are immediate since v > 0. Thus, all
the conditions of Theorem 3.1 are verified and the existence,

uniqueness and stability of a solution to the weak problem follows.
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Investigation of numerical schemes will not be carried out
here., However, it must be mentioned that the discrete stability
conditions (4.4) - (4.5) by no means\follow from the continuous
ones, For example, it is easy to see that the only piecewise
linear solenoidal field vanishing on the boundary of a square
triangulated into smaller squares, each bisected by a rightward
sloping diagonal in the plane, is the zero field. Then Zh
contains only the zero field and the discrete version of (2.2)
can clearly never be true. Thus, each choice of spaces Uh,
Sh requires independent verification. Some choices for Uh,

h

8 which are apparently suitable for use are given in [3].

These topics are considered more fully in [8].
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